Этапы формирования кратковременной и долговременной памяти
По материалам книги Николая Левашова «Сущность и разум»
1. Внешнее воздействие преобразуется органами чувств в ионный код.
Фотон, проникший в клетку через её мембрану, поднимает на гребне своей волны те атомы и молекулы, размеры которых соизмеримы с длиной этой волны. Это неорганические молекулы, атомы и ионы. Причём, фотон каждого цвета [разная длина волны (λ), частота (f)] имеет свой «набор» молекул и атомов, соизмеримых с длиной волны.
Таким образом, фронт волны фотона изменяет уровень мерности в точке своего прохождения, в то время, как на расстоянии λ/4 от вершины волны, мерность микропространства клетки остаётся такой же, как была до прихода волны-фотона. На расстоянии λ/2 от вершины волны мерность микропространства, соответственно, уменьшается на величину амплитуды этой волны. Другими словами, фотон при своём движении в светочувствительной клетке создаёт некоторый перепад уровней мерности, позволяющий молекулам, атомам и ионам, размеры которых соизмеримы с длиной волны, создавать новые химические соединения. При этом фотон поглощается (см. Рис.13). В результате этого процесса в светочувствительной клетке появляются дополнительные к обычному состоянию ионы. Причём, количество дополнительных ионов и их качественный состав зависит от того, какую длину волны λ имел поглощённый светочувствительной клеткой фотон света. После чего собственный уровень мерности этой клетки возвращается к изначальному состоянию. При этом, на время «возмущённого» состояния клетка не поглощает другие фотоны, именно поэтому светочувствительная сетчатка глаза не в состоянии «увидеть» двадцать пятый кадр
2. Ионный код по отросткам нейронов — аксонам — попадает без изменения в собственно нейроны.
Цветовой сигнал преобразуется в ионный код, который начинает своё путешествие к зрительным зонам мозга. Перераспределение ионов (ионный код) в светочувствительных клетках через контактные зоны (синапсы) вызывает вынужденное перераспределение ионов в так называемых двухполюсных клетках. Двухполюсные клетки аналогичным образом передают изменение своего качественного состояния (возбуждение) ганглиевым клеткам. И далее по волокнам зрительного нерва это электрохимическое возбуждение передаётся нейронам оптических зон коры головного мозга — затылочным и височным. Таким образом по аксонам нейронов, пучок которых и образует зрительный нерв, сигнал в виде перераспределения ионов (ионный код), достигает собственно тела нейрона (см. Рис.71). Любое внешнее воздействие на нервные окончания нейронов нашего тела преобразуется в них в электрохимический сигнал. По нашим нервам «бегают» только ионы, как в одном направлении, так и в другом.
3. В нейронах ионный код навязывает молекулам ДНК новые вынужденные электронные связи.
Появившиеся в нейроне дополнительные ионы приводят к нарушению ионного равновесия, в результате чего образуются новые химические соединения между молекулами, входящими в состав нейрона. Образуются новые соединения между молекулами, которых в нейроне не было, или разрушаются соединения между молекулами, которые были. Казалось бы, ничтожные изменения — появление нескольких новых и исчезновение нескольких старых молекулярных связей... Какие же «революционные» изменения они вызывают?! Но как раз именно эти несколько дополнительных молекулярных связей и создают новое качество, когда они (дополнительные молекулярные связи) появляются у молекул ДНК. И опять-таки причина такой особенности — в качественных отличиях между молекулами, точнее, в степени их влияния на уровень мерности окружающего их микропространства. Каждая молекула имеет собственный уровень мерности, который отражает степень влияния данной молекулы на окружающий микрокосмос. Присоединение к любой молекуле дополнительных атомов приводит к увеличению уровня собственной мерности этой молекулы. Особенно наглядно это проявляется у органических молекул.
4. В результате этого изменяется качественная структура молекул ДНК.
5. Качественные изменения структуры молекул ДНК сохраняются временно; по истечении некоторого времени качественная структура молекул ДНК возвращается к исходной.
6. В течение «жизни» ионного кода формируется его отпечаток на эфирном уровне.
В невозбуждённом нейроне эфирное тело структурно полностью повторяет физически плотный нейрон. Отличие — качественное и заключается в том, что физически плотное тело нейрона образовано слиянием семи первичных материй, в то время как эфирное — одной материей G (см. Рис.72). В возбуждённом состоянии у молекул ДНК нейрона в результате электрохимических реакций появляются дополнительные цепочки атомов. Именно эти «лишние» цепочки атомов и играют ключевую роль в создании нашей памяти (см. Рис.73). Каким же образом появление дополнительных атомов в молекулярной структуре молекул ДНК приводит к качественному скачку в развитии живой природы? Какая «божественная» трансформация происходит с живой материей при рождении «чуда» памяти и человеческого сознания? Божественная или мистическая дымка вокруг этого «чуда» рассеивается, как утренний туман под лучами восходящего Солнца, и остаётся обнажённое обыкновенное чудо природы... Молекулярная и пространственная структура молекул ДНК такова, и влияние на окружающий их микрокосмос столь существенно, что во внутреннем объёме их спиралей происходит открытие качественного барьера между физически плотным и эфирным уровнями. Причём, подобное открытие качественного барьера не разрушает сами эти молекулы, а только молекулы, попавшие в ловушку при своём движении внутри клетки — внутреннем объёме спиралей молекул ДНК. Уровень собственной мерности во внутреннем объёме этих молекул столь большой, что большинство молекул, попавших в него, становятся неустойчивыми и распадаются на материи, их образующие . Высвободившиеся таким образом первичные материи начинают перетекать на эфирный уровень и создают на нём точную копию как молекул ДНК, так и всей клетки в целом. Отличие заключается в том, что копия создаётся только из одной первичной материи G. Поэтому появление дополнительных цепочек из атомов и молекул ДНК (см. Рис.73) приводит к тому, что у эфирных копий этих молекул появляются тождественные изменения.
На эфирном уровне появляется эфирный отпечаток ионного кода окружающей реальности, которую наши глаза «видят» в данный момент. Условно примем за нулевой уровень отпечаток эфирного тела на эфирном уровне в виде плоскости. И если теперь на этот нулевой уровень накладывается эфирный отпечаток ионного кода окружающей реальности, он видоизменит, деформирует, преобразует изначальный вид этой плоскости. На ней появятся впадины и выпуклости. Создаётся шероховатая поверхность, шероховатость которой отражает качественную структуру зрительного сигнала. Всё это напоминает что-то очень знакомое и очень наглядное — достижение современной науки, чудо техники — голографическую запись изображения какого-либо предмета.
Молекула ДНК представляет собой две спирали, смещённые друг относительно друга по оси. Каждая из этих спиралей создаёт свой отпечаток на эфирном уровне. Каждый отпечаток в отдельности полностью повторяет форму спирали на физическом уровне. Витки одной спирали заполняют промежутки между витками другой. Вместе они создают своеобразный цилиндр. Причём, поверхность «цилиндра», создаваемая спиралями молекулы ДНК, будет близка к поверхности геометрического цилиндра. Теперь возьмём участок поверхности эфирного отпечатка молекулы ДНК до прихода ионного кода (см. Рис.75). Ионный код изменяет ионный баланс внутри нейрона, что провоцирует появление новых и разрушение старых электронных связей. В результате этого процесса, поверхность эфирного «цилиндра» молекул ДНК изменится (см. Рис.76). И, как следствие, на эфирном уровне получается своеобразная фазовая запись изображения. Аналогичная фазовая запись изображения производится для создания голограммы какого-либо предмета. Не правда ли, удивительная параллель. Все великие открытия науки природа сделала и «внедрила» в жизнь миллиарды лет тому назад...
Таким образом, отражённый от предмета свет, падая на светочувствительную сетчатку глаза, преобразуется в ионный код, который по зрительным нервам передаётся нейронам зрительных зон коры головного мозга. Далее в этих нейронах ионный код преобразуется в химический код, который, в свою очередь, проявляется на эфирном уровне в виде фазовой записи изображения. Теперь первичные материи, движущиеся между физическим, эфирным, астральным и другими уровнями, попадая на фазовую запись изображения, воспроизводят изображение реальности. Точно так же, как и монохроматический свет создаёт голограмму предмета. Таким образом, мозг создаёт голограмму реальности. То, что мы видим, является не отражением реальности, а её воссозданием, в виде голографической копии.
7. Продолжительность жизни эфирного отпечатка определяет время существования кратковременной памяти.
Ионный код, попав в нейрон, изменяет ионную картину в нём, в результате чего появляются новые и разрушаются старые электронные связи и, как следствие, на эфирном теле молекулы ДНК появляются изменения качественной структуры (см. Рис.73 и Рис.74). Как правило эти изменения качественной структуры молекулы ДНК и её эфирного тела нестабильны и исчезают с прекращением поступления сигнала. Ионная картина в нейроне возвращается к изначальной, и мозг готов к получению новой зрительной информации. При этом молекулярная структура ДНК возвращается к структуре, которая была до прихода ионного кода (см. Рис.77). И очень быстро эфирное тело молекулы ДНК также возвращается к первоначальному состоянию (см. Рис.78). Отпечаток на эфирном уровне исчезает с той же закономерностью, с какой исчезают следы ног на песке после очередной атаки волны. Для зрительных зон коры головного мозга подобная реакция на воздействующий сигнал является нормальной и неизбежной (в противном случае, реальность, которую мы увидели бы, открыв глаза, навечно или надолго осталась бы перед нашими глазами, и мы превратились бы в зрячих слепцов). Нейроны зрительных зон приспособлены для своих функций, и эта специализация привела к тому, что зрительные сигналы в нормальных условиях способны «наложить» свой отпечаток только на эфирном уровне этих нейронов. Именно поэтому зрительные образы могут меняться с частотой двадцать четыре раза в секунду, чего вполне достаточно для быстрого ориентирования в окружающей обстановке.
8. Стрессы, яркие впечатления, многократный повтор одного и того же внешнего воздействия обеспечивают формирования отпечатка на астральном уровне.
Каким же образом может появиться астральный отпечаток внешнего воздействия? Таких возможностей две:
1. При более активной циркуляции первичных материй между физическим и эфирным уровнями. В результате чего, дополнительные деформации на эфирном уровне полностью заполняются первичной материей G до того, как физические следы внешнего воздействия исчезнут. Продолжение насыщения эфирного уровня первичной материей G приведёт к избыточному насыщению эфирного отпечатка внешнего воздействия и вызовет дополнительную деформацию на астральном уровне, которая, в свою очередь, начнёт насыщаться первичными материями G и F, формируя астральный отпечаток внешнего воздействия (см. Рис.81).
2. При многократном тождественном повторении внешнего воздействия на одни и те же нейроны с интервалом, при котором эфирный отпечаток внешнего воздействия не успеет исчезнуть. В этом случае происходит постепенное насыщение эфирного отпечатка внешнего воздействия, что также приводит к избыточному насыщению и вызовет дополнительную деформацию на астральном уровне, насыщение которой приведёт к образованию астрального отпечатка.
9. Продолжительность жизни астрального отпечатка внешнего воздействия практически не ограничена.
Это обусловлено тем, что астральный отпечаток образован синтезом двух первичных материй G и F, и эта гибридная форма GF качественно отличается от свободных первичных материй, что и определяет значительную её устойчивость, инерционность. А эфирный отпечаток представляет собой деформацию эфирного уровня, заполненную свободной первичной материей G, которая немедленно сливается с другими свободными первичными материями, как только разрушается эфирный отпечаток. Свободная первичная материя G убегает из «плена» эфирного отпечатка так же, как и вода, заполняющая след на прибрежном песке, сливается с волной, накатившейся на берег и «слизнувшей» с песка этот след.
10. Астральный отпечаток образуется из гибридной материи GF, которая образуется в результате слияния первичных материй G и F в зоне астральной проекции внешнего сигнала.
11. Эфирный и астральный отпечатки внешнего сигнала образуют систему долговременной памяти.
Каждому человеку чаще или реже приходилось напрягать свою память по тем или иным причинам. Причём, напрягать не только в переносном смысле, но и в прямом. Каждому хорошо знакомо ощущение, когда, при попытке что-нибудь вспомнить, в голове возникает вполне физически ощущаемое напряжение, сопровождающееся повышением давления крови в сосудах и скорости её движения по ним. Всё это приводит к тому, что ускоряются обменные процессы в нейронах мозга. Что, в свою очередь, приводит к тому, что большее число молекул в единицу времени попадают в ловушки с запредельной мерности молекул ДНК и распадаются на первичные материи, их образующие. При этом, эфирные отпечатки внешних воздействий событий и явлений прошлого получают избыточное, по отношению к балансному, насыщение первичной материей G. Вследствие этого, возникает обратный поток первичной материи G с эфирного уровня нейрона на физический (см. Рис.83). И на физическом уровне появляется эфирная проекция внешнего воздействия, что приводит к изменению уровней мерности в пределах этой эфирной проекции. Ионы и атомы, имеющие соответствующие уровни собственной мерности, попадая при своём движении в эту зону проекции, восстанавливают молекулярную структуру молекулы ДНК, которую она имела при наличии внешнего воздействия (см. Рис.84). Таким образом восстанавливается ионный код внешнего воздействия и, как следствие, мозг в состоянии «вытащить» из глубин памяти информацию о прошлых событиях, казалось бы навечно канувших в лету.
12. При разрушении эфирного отпечатка в системе долговременной памяти, он может быть восстановлен через обратную проекцию астрального отпечатка на эфирный уровень.
Для «воскрешения» памяти должны быть выполнены следующие условия:
1. Восстановление нормального кровообращения головного мозга. Так как это является необходимым условием восстановления метаболизма нейронов мозга. Для нормальной работы любой клетки организма, органические и неорганические молекулы, ионы должны поступать непрерывно, а также должны удаляться продукты распада.
2. Восстановление до оптимальных уровней восходящих и нисходящих потоков первичных материй между физическим, эфирным, астральным уровнями нейронов.
3. Избыточное насыщение первичными материями G и F астрального отпечатка внешнего сигнала.
А теперь, поэтапно проследим за самим механизмом восстановления памяти... Высвобождаемые в результате расщепления органических и неорганических молекул, попавших в зоны-ловушки молекул ДНК, первичные материи восходящим потоком пронизывают все уровни нейрона. В результате чего, астральный отпечаток внешнего сигнала начнёт насыщаться первичными материями G и F (см. Рис.88). Если скорость насыщения V1 первичными материями астрального отпечатка больше скорости потери V2, происходит постепенное накопление первичных материй G и F. Когда уровень насыщения астрального отпечатка первичными материями достигнет критического, происходит выброс первичных материй. Причём, обратный поток «открывает» качественный барьер между астральным и эфирным уровнями с «обратной» стороны — с астрального уровня на эфирный. В результате этого, на эфирном уровне появляется астральная проекция отпечатка внешнего воздействия (см. Рис.89). И если этот процесс происходит достаточно активно, проекция плавно перейдёт в соответствующую деформацию эфирного уровня, при заполнении которой первичной материей G, формируется новая эфирная копия, точно повторяющая астральную копию внешнего воздействия (см. Рис.90). И если теперь получить избыточное насыщение эфирной копии первичной материей G, возникнет обратный поток этой материи на физический уровень. На физическом уровне образуется эфирная проекция внешнего воздействия (см. Рис.91). Эфирная проекция на физическом уровне приводит к изменению уровня собственной мерности микропространства в зоне проекции, что приводит к восстановлению ионного кода (см. Рис.92). Таким образом, повреждённая память восстанавливается...
Запись информации происходит на ЭФИРНОМ и АСТРАЛЬНЫХ уровнях мозга. Физический мозг является только инструментом, с помощью которого осуществляется запись информации. Именно поэтому, исследования работы мозга не дали возможности учёным определить, где мозг «хранит» информацию. Ещё раз вспомним китайского философа Конфуция, который сказал: «Нельзя найти чёрную кошку в чёрной комнате тогда, когда её там нет...»